03 Issues & Trends
Cereal Foods World, Vol. 63, No. 4
Print To PDF
The Evolution of Enzyme-Treated Starches from Sweeteners to Healthy Ingredients
A. A. C. M. Oudhuis1 and P. L. Buwalda2
Avebe, Veendam, The Netherlands

1 Corresponding author. Avebe, Prins Hendrinkplein 20, Veendam, The Netherlands. Tel: +31(0)598669111; E-mail: Lizette.Oudhuis@Avebe.com
2
E-mail: Piet.Buwalda@Avebe.com


Abstract

In recent decades, the role of starch in foods has expanded from that of an energy source to a food texturizer, and, most recently, to a health-promoting ingredient. The texture of a food depends on the properties of the starches present, as well as changes in these properties during processing. To positively influence both aspects of food starches, many starch derivatives have been developed using chemical and enzymatic treatments. Several new routes are also being employed to develop health-promoting starches. One method utilizes specific enzymes with specific modes of action to create starches that are slowly digestible or nondigestible and that still have texturizing properties. Today a wide variety of starches can be found in markets and on food labels, ranging from highly degraded starch polymers (i.e., maltodextrins) to highly crosslinked starches that form large networks. In the coming years, many innovations in ingredients will be developed to meet consumer demands, promote health, and provide greater nutritional value.





Trying to reach content?

View Full Article

if you don't have access, become a member

References

  1. Alexander, R. J. Carbohydrates used as fat replacers. Page 343 in: Developments in Carbohydrate Chemistry. R. J. Alexander and H. F. Zobel, eds. AACC International, St. Paul, MN, 1992.
  2. Alting, A. C., van der Velde, F., Kanning, M. W., Burgering, M., Mulleners, L., Sein, A., and Buwalda, P. Improved creaminess of low-fat yoghurt: The impact of amylomaltase-treated starch domains. Food Hydrocoll. 23:980, 2009.
  3. Buchholz, K., and Seibel, J. Industrial carbohydrate biotransformations. Carbohydr. Res. 343:1966, 2008.
  4. Buwalda, P., and Sein A. Cream substitute. Patent WO 2008071744 A2, 2008.
  5. Cawley, J., Meyerhoefer, C., Biener, A., Hammer, M., and Wintfield, N. Savings in medical expenditures associated with reductions in body mass index among US adults with obesity, by diabetes status. Pharmacoeconomics 33:707, 2015.
  6. Chiarini, G. E-numbers vs. clean label—The food battle of the 21st century. Published online at www.world-gourmet-society.com/en/blog/culinary-guru-corner/76-e-numbers-vs-clean-label-the-food-battle-of-the-21st-century. World Gourmet Society, www.world-gourmet-society.com, 2013.
  7. Gu, F., Borewicz, K., Richter, B., Zaal, P. H., Smidt, H., Buwalda, P. L., and Schols, H. A. In vitro fermentation behavior of isomalto/maltopolysaccharides using human fecal inoculum indicates prebiotic potential. Mol. Food Nutr. Res. DOI: https://doi.org/10.1002/mnfr.201800232. 2018.
  8. Hansen, M. R., Blennow, A., Pedersen, S., Nørgaard, L., and Engelsen, S. B. Gel texture and chain structure of amylomaltase modified starches compared to gelatin. Food Hydrocoll. 22:1551, 2008.
  9. Kajiura, H., Takata, H., Kuriki, T., and Kitamura, S. Structure and solution properties of enzymatically synthesized glycogen. Carbohydr. Res. 345:817, 2010.
  10. Kanning, M. W., van de Velde, F., Alting, A. C., Mulleners, L., Sein, A., van den Akker-Bleumink, B., and Buwalda P. Improved creaminess in stirred yoghurt through amylomaltase-treated starch domains. Int. Dairy J. 27:86, 2012.
  11. Kaper, T., van der Maarel, M. L. E. C., Euverink, G. J. W., and Dijkhuizen, L. Exploring and exploiting starch-modifying amylomaltases from thermophiles. Biochem. Soc. Trans. 32:279, 2004.
  12. Kendall, C. W. C., Esfahani, A., and Jenkins, D. J. A. The link between dietary fibre and human health. Food Hydrocoll. 24:42, 2010.
  13. Leemhuis, H., Dobruchowska, J. M., Ebbelaar, M., Faber, F., Buwalda, P. L., van der Maarel, M. L. E. C., Kamerling, J. P., and Dijkhuizen, L. Isomalto/malto-polysaccharide, a novel soluble dietary fibre made via enzymatic conversion of starch. J. Agric. Food Chem. 133:1333, 2014.
  14. Ohkuma, K., Hanno, Y., Inada, K., Matsuda, I., and Katta, Y. Indigestible dextrin. U.S. patent 5,364,652, 1994.
  15. Ohr, L. M. Managing blood sugar. Food Technol. 69:71, 2015.
  16. Palomo, M., Kralj, S., van der Maarel, M. J. E. C., and Dijkhuizen, L. The unique branching patterns of Deinococcus glycogen branching enzymes are determined by their N-terminal domains. Appl. Environ. Microbiol. 75:1355, 2009.
  17. Van der Maarel, M. L. E. C., Binnema, D. J., Semeijn, C., and Buwalda, P. L. Novel slowly digestible storage carbohydrate. Patent WO 2008082298 A2, 2008.
  18. Van der Maarel, M. L. E. C., and Leemhuis, M. Starch modification with microbial α-glucanotransferase enzymes. Carbohydr. Polym. 93:119, 2013.
  19. Van der Maarel, M. L. E. C., van der Veen, B., Uitdehaag, J. C., and Dijkhuizen, L. Properties and applications of starch converting enzymes of the α-amylase family. J. Biotechnol. 84:137, 2002.
  20. World Health Organization. Controlling the global obesity epidemic. Published online at www.who.int/nutrition/topics/obesity/en. WHO, Geneva, 2003.