Methods to Analyze Glyphosate (GLY) and Its Main Degradation Product Aminomethylphosphonic Acid (AMPA) in Grains and Grain-Based Foods

Sheryl Tittlemier¹ Canadian Grain Commission, Grain Research Laboratory, Winnipeg, MB, Canada

This report provides a list of methods for the analysis of glyphosate (GLY) and aminomethylphosphonic acid (AMPA) published in peer-reviewed scientific literature (Table I). It is not meant to be an exhaustive list of testing methodologies, but to indicate the breadth of technologies used, range of sensitivity, range of matrices, and range of validation status. Preference for inclusion on this list is given to more recent publications as they reflect technologies and materials currently available and also reference older work. These are mature methods using common technologies that have been validated and applied to real samples, as opposed to methods under development.

References

- Alferness, P. L., and Wiebe, L. A. Determination of glyphosate and aminomethylphosphonic acid in crops by capillary gas chromatography with mass-selective detection: Collaborative study. J. AOAC Int. 84:823, 2001.
- Chamkasem, N., and Harmon, T. Direct determination of glyphosate, glufosinate, and AMPA in soybean and corn by liquid chromatography/tandem mass spectrometry. Anal. Bioanal. Chem. 408:4995, 2016.
- Goscinny, S., Unterluggauer, H., Aldrian, J., Hanot, V., and Masselter, S. Determination of glyphosate and its metabolite AMPA (aminomethylphosphonic acid) in cereals after derivatization by isotope dilution and UPLC-MS/MS. Food Anal. Methods 5:1177, 2012.
- 4. Granby, K., Johannesen, S., and Vahl, M. Analysis of glyphosate residues in cereals using liquid chromatography-mass spectrometry (LC-MS/MS). Food Addit. Contam. 20:692, 2003.
- 5. Herrera López, S., Scholten, J., Kiedrowska, B., and de Kok, A. Method validation and application of a selective multiresidue anal-

¹ On behalf of the Approved Methods Food Safety and Microbiology Technical Committee

https://doi.org/10.1094/CFW-65-4-0046 © 2020 Cereals & Grains Association ysis of highly polar pesticides in food matrices using hydrophilic interaction liquid chromatography and mass spectrometry. J. Chromatogr. A 1594:93, 2019.

- Liao, Y., Berthion, J.-M., Colet, I., Merlo, M., Nougadère, A., and Hu, R. Validation and application of analytical method for glyphosate and glufosinate in foods by liquid chromatography-tandem mass spectrometry. J. Chromatogr. A 1549:31, 2018.
- Martins-Júnior, H. A., Lebre, D. T., Wang, A. Y., Pires, M. A. F., and Bustillos, O. V. An alternative and fast method for determination of glyphosate and aminomethylphosphonic acid (AMPA) residues in soybean using liquid chromatography coupled with tandem mass spectrometry. Rapid Commun. Mass Spectrom. 23:1029, 2009.
- Mol, H. G. J., and van Dam, R. C. J. Rapid detection of pesticides not amenable to multi-residue methods by flow injection-tandem mass spectrometry. Anal. Bioanal. Chem. 406:6817, 2014.
- Nagatomi, Y., Yoshioka, T., Yanagisawa, M., Uyama, A., and Mochizuki, N. Simultaneous LC-MS/MS analysis of glyphosate, glufosinate, and their metabolic products in beer, barley tea, and their ingredients. Biosci. Biotechnol. Biochem. 77:2218, 2013.
- Oulkar, D. P., Hingmire, S., Goon, A., Jadhav, M., Ugare, B., Thekkumpurath, A. S., and Banerjee, K. Optimization and validation of a residue analysis method for glyphosate, glufosinate, and their metabolites in plant matrixes by liquid chromatography with tandem mass spectrometry. J. AOAC Int. 100:631, 2017.
- Rodrigues, N. R., and de Souza, A. P. F. Occurrence of glyphosate and AMPA residues in soy-based infant formula sold in Brazil. Food Addit. Contam. A 35:723, 2018.
- Santillo, A., Pompili, C., and Giambenedetti, A. Determination of glyphosate residue in maize and rice using a fast and easy method involving liquid chromatography–mass spectrometry (LC/MS/MS). J. Environ. Sci. Health B 54:205, 2019.
- 13. Tittlemier, S. A., Drul, D., Lake, B., Zirdum, T., Hammond, E., Sobering, D., Lin, W. J., Tran, M., and Roscoe, M. Evaluation of a commercially available enzyme-linked immunosorbent assay and a liquid chromatography-tandem mass spectrometric method for the analysis of glyphosate in wheat, oats, barley, malt, and lentils. Cereal Chem. 94:1028, 2017.

Applicable Matrices	Validation Status	Detection Technology	Sample Preparation	Reported Sensitivity	Reference
Corn	Collaborative validation study	GC-MS	Extraction with water; cation exchange cleanup; derivatization	GLY LOQ = 0.05 mg/kg	Alferness and Wiebe (1)
Barley, lentils, malt, whole oats, wheat	Single laboratory validation	ELISA	Extraction with 1 N HCl	GLY LOQ = 0.3 mg/kg	Tittlemier et al. (13)
Oats, soybean	Single laboratory validation	HILIC-MS/MS	Extraction with water, formic acid, and methanol	GLY LOQ = 0.1 – 0.5 mg/kg AMPA LOQ = 0.05 mg/kg	Herrera López et al. (5)
Corn, rice	Single laboratory validation	IC-MS/MS	Extraction with water, formic acid, and methanol	GLY LOQ = 0.01 mg/kg	Santillo et al. (12)
Barley, corn, rice, wheat	Single laboratory validation	LC-MS/MS	Extraction with water, methanol, and dichloromethane; derivatization with FMOC-Cl	GLY LOQ = 0.005 mg/kg	Liao et al. (6)
Barley, lentils, malt, whole oats, wheat	Single laboratory validation	LC-MS/MS	Extraction with water and dichloro- methane; derivatization with FMOC-Cl; SPE	GLY LOQ = 0.05 - 0.1 mg/kg AMPA LOQ = 0.05 - 0.2 mg/kg	Tittlemier et al. (13)
Corn, soybean	Single laboratory validation	LC-MS/MS	Extraction with water, formic acid, and dichloromethane; derivatization with FMOC-Cl; SPE	GLY LOQ = 0.0005 - 0.002 mg/kg AMPA LOQ = 0.0005 - 0.002 mg/kg	Oulkar et al. (10)
Corn, soybean	Single laboratory validation	LC-MS/MS	Extraction with 50 mM acetic acid/ 10 mM Na ₂ EDTA; SPE	GLY LOQ = 0.05 mg/kg AMPA LOQ = 0.05 mg/kg	Chamkasem and Harmon (2)
Soybean-based infant formula	Single laboratory validation	IC-FLD	Extraction with 0.1 M HCl; ion exchange column cleanup; post-column deri- vatization	GLY LOQ = 0.02 mg/kg AMPA LOQ = 0.02 mg/kg	Rodrigues and de Souza (11)
Wheat flour	Single laboratory validation	Flow injection- MS/MS	Extraction with water	$GLY LOQ = 0.3 mg/kg^b$	Mol and van Dam (8)
Oat flour, rye flour, wheat flour	Single laboratory validation	LC-MS/MS	Extraction with water, methanol, and dichloromethane; derivatization with FMOC-Cl	GLY LOQ = 0.02 mg/kg AMPA LOQ = 0.02 mg/kg	Goscinny et al. (3)
Soybean	Single laboratory validation	LC-MS/MS	Extraction with water and dichloro- methane; protein precipitation	GLY LOQ = 0.3 mg/kg AMPA LOQ = 0.3 mg/kg	Martins-Júnior et al. (7)
Wheat	Single laboratory validation	IC-MS/MS	Extraction with water; in-line reverse- phase column cleanup	$GLY LOQ = 0.06 \text{ mg/kg}^{b}$	Granby et al. (4)
Beer, corn, malt	Minimal	IC-MS/MS	Extraction with water (grains); sequen- tial cation and anion exchange SPE	GLY LOQ = 0.01 mg/kg AMPA LOQ = 0.01 mg/kg	Nagatomi et al. (9)

^a GC-MS: gas chromatography-mass spectrometry; LOQ: limit of quantitation; ELISA: enzyme-linked immunosorbent assay; HILIC-MS/MS: hydrophilicinteraction liquid chromatography-tandem mass spectrometry; IC-MS/MS: ion chromatography-tandem mass spectrometry; LC-MS/MS: liquid chromatography-tandem mass spectrometry; IC-FLD: ion chromatography with fluorescence detection.

^b Estimated as 3× reported limit of detection.